Cho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng AD vuông góc với AB và bằng AB (D khác phía C đối với AB), vẽ đoạn thẳng AE vuông góc với AC và bằng AC (E khác phía B đối với AC).Kẻ AH vuông góc BC tại H. Kẻ DI và EK cùng vuông góc với đường thẳng AH (I và K thuộc đường thẳng AH).Chứng minh rằng: a) Tam giác ABH = Tam giác DAI b) DI = EK c) DE và KI cắt nhau tại trung điểm của mỗi đường `------------------` Làm `2` phần `b` và `c`
1 câu trả lời
a) Xét ∆ABE và ∆ACD, ta có:
AB = AD (gt)
AE = AC (gt)
BAE^=BAC^+90∘CAD^=BAC^+90∘⇒BAE^=CAD^
Suy ra: ∆ABE = ∆ADC (c.g.c)
DC = BE (2 cạnh tương ứng)
b) Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K
Ta có: ∆ABE = ∆ADC (chứng minh trên)
ABE^=D^ (1)
Trong tam giác vuông AHD, ta có: HAD^=90∘
⇒D^+AHD^=90∘ (tính chất tam giác vuông) (2)
Mà: AHD^=KHB^ (đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: ABE^+KHB^=90∘
Trong ∆KHB, ta có:
KHB^+ABE^+BKH^=180∘ (tổng 3 góc trong tam giác)
⇒BKH^=180∘–(ABE^+BKH^)=180∘–90∘=90∘
Vậy DC⊥BE.

Câu hỏi trong lớp
Xem thêm
