: Cho tam giác ABC cân tại A. E, F lần lượt là trung điểm của AB, AC. a) Chứng minh: AE = AF. b) Chứng minh: ABF = ACE. c) Chứng minh: EF // BC
1 câu trả lời
Đáp án:
Giải thích các bước giải:
a) Ta có: AB = AE + EB; AC = AF + FC
Mà AB = AC (gt)
AE = AF (gt)
=> EB = FC
Vì tam giác ABC có AB = AC => tam giác ABC cân tại A
=> góc B = góc C (tính chất tam giác cân)
Xét tam giác BEC và tam giác CFB có:
EB = FC (cmt)
góc B = góc C (cmt)
BC chung
=> tam giác BEC = tam giác CFB (c.g.c)
=> BF = CE (2 góc T.Ứ) ; => góc BEC = góc CFB
b) C1: Xét tam giác IBE và tam giác ICF có:
IE = IF (gt)
góc BEC = góc CFB (cmt)
EB = FC (cmt)
=> tam giác IBE = tam giác ICF (c.g.c)
C2: Ta có BF = IB + IF
CE = CI + IE
Mà BF = CE (cmt)
IE = IF (gt)
=> IB = IC
Ta có góc BIE = góc CIF ( 2 góc đối đỉnh)
Xét tam giác IBE và tam giác ICF có:
IE = IF (gt)
góc BIE = góc CIF (cmt)
IB = IC (cmt)
=> tam giác IBE = tam giác ICF (c.g.c)