Cho tam giác ABC cân tại A . D là 1 điểm trên AB, E là 1 điểm trên AC sao cho AD=AE . Từ D vad E hạ các đường DM và EN cùng vuông góc với BC . Chứng minh BM=CN Lưu ý : Mạng ko có , làm có tâm chút , hình đầy đủ , Nhanh giúp mk ạ mk đag gấp

1 câu trả lời

Đáp án:

 

Giải thích các bước giải:

Ta có:AD+DB=AB( vì D AB)

=>DB=AB-AD(1)

AE+EC=AC(vì E AC)

=>EC=AC-AE (2)

mà AB=AC(GT);AD=AE(GT) (3)

từ (1);(2);(3)

=>DB=EC

xét tam giác ABC có:AB=AC(GT)

=>tam giác ABC cân tại A(dấu hiệu nhận biết)

=>góc B=góc C

Xét tam giác BDM vuông tại M và tam giác CEN vuông tại N có

+BD=CE(chứng minh trên)

+góc B=góc C(chứng minh trên)

=>tam giác BDM=tam giác CEN(cạnh huyền-góc nhọn)

=>BM=CN(2 cạnh tương ứng)

Câu hỏi trong lớp Xem thêm