Cho m và n là các số tự nhiên, m là số tự nhiên lẻ. Chứng tỏ rằng m và mn +8 là hai số nguyên tố cùng nhau.
2 câu trả lời
Gọi a bằng ƯC ( m , mn + 8 )
Ta có: m chia hết cho a ( m lẻ => a lẻ )
=> mn chia hết cho a
Lại có: mn + 8 chia hết cho a
=> mn + 8 - mn chia hết cho a
=> 8 chia hết cho a
=> a \(\in\) Ư ( 8 ) = { 1 ; 2 ; 4 ; 8 }
Vì a lẻ
=> a = 1
=> ƯC ( mn ; mn + 8 ) = 1
=> m và mn + 8 là hai số nguyên tố cùng nhau.