B1 : Cho tam giác ABC vuông tại A . Trên tia BC lấy điểm D sao cho BA=BD . Đường vuông góc với cạnh BC tại D cắt AC tại E cắt BA tại F Chứng minh rằng : a, tam giác ABE = tam giác DBE b, tam giác CEF là tam giác cân c, AD//CF GIẢI GIÚP TUI VOTE 5*
1 câu trả lời
Đáp án:
hình tự vẽ
a) Xét t/giác ABE và t/giác DBE
có AB = BD (gt)
góc BAE = góc BDE = 900 (gt)
BE : chung
=> t/giác ABE = t/giác DBE (ch - cgv)
b) Ta có: t/giác ABE = t/giác DBE (cmt)
=> góc ABE = góc DBE (hai góc tương ứng)
=> BE là tia p/giác của góc ABD
hay BE là tia p/giác của góc ABC
c) Xét t/giác AEF và t/giác DEC
có góc FAE = góc CDE = 900 (gt)
AE = ED (Vì t/giác ABE = t/giác DBE)
góc AEF = góc DEC (đối đỉnh)
=> t/giác AEF = t/giác DEC (g.c.g)
=> EF = CF (hai cạnh tương ứng)
=> t/giác CEF là t/giác cân
d) Ta có: t/giác AEF = t/giác DEC (cmt)
=> AF = DC (hai cạnh tương ứng)
Mà AB + AF= BF
BD + DC = BC
Và AB = BD (gt)
=> BF = BC
=> t/giác BFC cân tại B
=> góc F = góc C = (1800 - góc B)/2 (1)
Ta lại có AB = BD (gt)
=> t/giác ABD cân tại B
=> góc BAD = góc BDA = (1800 - góc B)/2 (2)
Từ (1) và (2) suy ra góc BAD = góc F
mà góc BAD và góc F ở vị trí đồng vị
=> AD // CF (Đpcm)