A = 124.( 1/1.1985 + 1/2.1986 + 1/3.1987 + ... + 1/16.2000); B = 1/1.17 + 1/2.18 + 1/3.19 + ... + 1/1984.2000. So sánh hai biểu thức A và B
2 câu trả lời
Đáp án:
Giải thích các bước giải: A=124.(11.1985+12.1986+13.1987+...+116.2000)A=124.11984.(1−11985+12−11986+13−11987+...+116−12000)=116.(1−11985+12−11986+13−11987+...+116−12000)=116.(1+12+13+...+116−(11985+11986+11987+...+12000))B=11.17+12.18+13.19+....+11984.2000=116.(1−117+12−118+13−119+...+11984−12000)=116.(1+12+13+...+11984−117−118−119−....−12000)=116.(1+12+13+....+11984−(117+118+119+...+12000))=116[(1+12+13+...+116)+(117+118+...+11984)−(117+118+...+11984)−(11985+11986+11987+...+12000)]=116.[(1+12+...+116)−11985+11986+...+12000]⇒A=B
Đáp án:
Giải thích các bước giải:
A=124⋅(11.1985+12.1986+13.1987+...+116.2000)
=1241984⋅(19841.1985+19842.1986+19843.1987+...+198416.2000)
=116(1−11985+12−11986+13−11987+...+116−12000)
=116⋅(1+12+13+...+116)⋅(11985+11986+11987+...+12000)
B=11.17+12.18+...+11984.2000
=116(161.17+162.18+...+161984.2000)
=116(1−117+12−118+...+11984−12000)
=116[(1+12+...+11984)−(117+118+...+12000)]
=116(1+12+...+116)+(117+118+...+11984)−(117+118+...+11984)−(11985+11986+...+12000)
=116[(1+12+...+116)−(11985+11986+...+12000)]
Vậy A=B.