x=$\frac{2^{15} .81}{6^{5}. 8^{3} }$

2 câu trả lời

Đáp án:

$x=\dfrac{2}{3}$

Giải thích các bước giải:

$x=\dfrac{2^{15}. 81}{6^5.8^3}$

$=\dfrac{2^{15}.3^4}{2^9.2^5.3^5}$

$=\dfrac{2^{15}.3^4}{2^{14}.3^5}$

$=\dfrac{2.3^4}{3^5}$

$x=\dfrac{2}{3}$

Đáp án:

`x = (2^15 . 81)/(6^5 . 8^3)`

`x = (2^15 . 3^4)/[(2.3)^5 . (2^3)^3]`

`x = (2^15 . 3^4)/[2^5 . 3^5 . 2^9]`

`x = (2^15 . 3^4)/[(2^5 . 2^9). 3^5]`

`x = (2^15 . 3^4)/[2^14 . 3^5]`

`x = (2^14 . 2 . 3^4)/[2^14 . 3^4 . 3]`

`x = (\cancel{2^14} . 2. \cancel{3^4})/[\cancel{2^14} . \cancel{3^4} . 3]`

`x = 2/3`

`#dariana`