1 câu trả lời
$\textit{$2^100$-(1+2+.......+$2^99$)}$
Đặt 1+2+.....+$2^99$
2B=2+$2^2$+....+$2^99$
$\Longrightarrow$2B-B=(2+....+$2^99$+$2^100$)-(1+2+.....+$2^99$)
$\Longrightarrow$B=$2^100$-1
$\Longrightarrow$A=$2^100$-($2^100$-1)=$2^100$-$2^100$+1=1
Xin ctlhn