Tính các giới hạn sau: 1) lim(nn2+3) 2) lim(3n2n3+n)

2 câu trả lời

Đáp án:1)lim

2)\lim(\sqrt[3]{n^2-n^3}+n)=\dfrac{1}{3}

Giải thích các bước giải:

 1)\lim(n-\sqrt{n^2+3})

=\lim\dfrac{(n-\sqrt{n^2+3}).(n+\sqrt{n^2+3})}{(n+\sqrt{n^2+3})}

=\lim\dfrac{n^2-(n^2+3)}{(n+\sqrt{n^2+3})}

=\lim\dfrac{-3}{n+\sqrt{n^2+3}}

=\lim\dfrac{\dfrac{-3}{n}}{1+\sqrt{1+\dfrac{3}{n^2}}}

=\dfrac{0}{2}

=0

2)\lim(\sqrt[3]{n^2-n^3}+n)

=\lim\dfrac{n^2-n^3+n^3}{(\sqrt[3]{n^2-n^3})^2-n\sqrt[3]{n^2-n^3}+n^2}

=\lim\dfrac{n^2}{(\sqrt[3]{n^2-n^3})^2-n\sqrt[3]{n^2-n^3}+n^2}

=\lim\dfrac{n^2}{(n\sqrt[3]{\dfrac{1}{n}-1})^2-n^2\sqrt[3]{\dfrac{1}{n}-1}+n^2}

=\lim\dfrac{n^2}{n^2(\sqrt[3]{\dfrac{1}{n}-1})^2-n^2\sqrt[3]{\dfrac{1}{n}-1}+n^2}

=\lim\dfrac{1}{(\sqrt[3]{\dfrac{1}{n}-1})^2-\sqrt[3]{\dfrac{1}{n}-1}+1}

=\dfrac{1}{1-(-1)+1}

=\dfrac{1}{3}

Công thức sử dụng :

a-\sqrt{b}=\dfrac{a^2-b}{a+\sqrt{b}}

\sqrt[3]{a}+b=\dfrac{a+b^3}{(\sqrt[3]{a})^2-b\sqrt[3]{a}+b^2}

1)

lim(n-sqrt(n^2+3))\\=lim((n^2-n^2-3)/(n+sqrt(n^2+3)))\\=lim(3)/(n+sqrt(n^2+3))=0

2)

lim(root[3](n^2-n^3)+n)\\=lim((n^2)/(root[3]((n^2-n^3)^2)-nroot[3](n^2-n^3)+n^2))\\=lim((1)/(root[3](1/(n^2+2/n+1))-root[3](1/n-1)+1))\\=1/3

Câu hỏi trong lớp Xem thêm