Tính các giới hạn sau: $1)$ $lim(n-\sqrt{n^2+3})$ $2)$ $lim(\sqrt[3]{n^2-n^3}+n)$
2 câu trả lời
Đáp án:$1)\lim(n-\sqrt{n^2+3})=0$
$2)\lim(\sqrt[3]{n^2-n^3}+n)=\dfrac{1}{3}$
Giải thích các bước giải:
$1)\lim(n-\sqrt{n^2+3})$
$=\lim\dfrac{(n-\sqrt{n^2+3}).(n+\sqrt{n^2+3})}{(n+\sqrt{n^2+3})}$
$=\lim\dfrac{n^2-(n^2+3)}{(n+\sqrt{n^2+3})}$
$=\lim\dfrac{-3}{n+\sqrt{n^2+3}}$
$=\lim\dfrac{\dfrac{-3}{n}}{1+\sqrt{1+\dfrac{3}{n^2}}}$
$=\dfrac{0}{2}$
$=0$
$2)\lim(\sqrt[3]{n^2-n^3}+n)$
$=\lim\dfrac{n^2-n^3+n^3}{(\sqrt[3]{n^2-n^3})^2-n\sqrt[3]{n^2-n^3}+n^2}$
$=\lim\dfrac{n^2}{(\sqrt[3]{n^2-n^3})^2-n\sqrt[3]{n^2-n^3}+n^2}$
$=\lim\dfrac{n^2}{(n\sqrt[3]{\dfrac{1}{n}-1})^2-n^2\sqrt[3]{\dfrac{1}{n}-1}+n^2}$
$=\lim\dfrac{n^2}{n^2(\sqrt[3]{\dfrac{1}{n}-1})^2-n^2\sqrt[3]{\dfrac{1}{n}-1}+n^2}$
$=\lim\dfrac{1}{(\sqrt[3]{\dfrac{1}{n}-1})^2-\sqrt[3]{\dfrac{1}{n}-1}+1}$
$=\dfrac{1}{1-(-1)+1}$
$=\dfrac{1}{3}$
Công thức sử dụng :
$a-\sqrt{b}=\dfrac{a^2-b}{a+\sqrt{b}}$
$\sqrt[3]{a}+b=\dfrac{a+b^3}{(\sqrt[3]{a})^2-b\sqrt[3]{a}+b^2}$
1)
`lim(n-sqrt(n^2+3))`$\\$`=lim((n^2-n^2-3)/(n+sqrt(n^2+3)))`$\\$`=lim(3)/(n+sqrt(n^2+3))=0`
2)
`lim(root[3](n^2-n^3)+n)`$\\$`=lim((n^2)/(root[3]((n^2-n^3)^2)-nroot[3](n^2-n^3)+n^2))`$\\$`=lim((1)/(root[3](1/(n^2+2/n+1))-root[3](1/n-1)+1))`$\\$`=1/3`
