TIM X Y Z X\2 Y\3 Z\7 VA X.Y.Z=42

2 câu trả lời

Ta có

$\dfrac{x}{2} . \dfrac{x}{2} . \dfrac{x}{2} = \dfrac{x}{2} . \dfrac{y}{3} . \dfrac{z}{7}$

$\dfrac{x^3}{8} = \dfrac{xyz}{2.3.7} = \dfrac{42}{42}$

Vậy $x^3 = 8$, suy ra $x = 2$

Từ $\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{7}$, ta suy ra $y = 3$ và $z = 7$

$C1$ . $\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{x}{7}$

$⇔ \dfrac{x}{2} = \dfrac{y}{3} = \dfrac{x}{7} = \dfrac{x.y.z}{2.3.7}$

$⇒ \dfrac{42}{42} = 1$

$⇒$ $\left \{ {{x=2} \atop {y=3}} \atop {z=7} \right.$ 

  Vậy `(x;y;z)=(2;3;7)`

$C2$. Đặt $\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{7} = k$ 

$⇒$ $x = 2k; y = 3k; z = 7k$

$⇒ x.y.z = 2k.3k.7k = 42$

$⇔ k^3 = 1$

$⇔ k=1$

Dễ dàng tìm được : $\left \{ {{x=2} \atop {y=3}} \atop {z=7} \right.$ 

  Vậy `(x;y;z)=(2;3;7)`