Tìm x thuộc Z để các biểu thức sau nguyên a, A = 2x - 3 / x + 1 b, B = x - 3 / x + 5 c, C = 3x + 2 / x - 3 d, D= 2x - 1 / x+ 3 Please mik đg gấp lém
1 câu trả lời
Đáp án:
\(\begin{array}{l}
a)\left[ \begin{array}{l}
x = 4\\
x = - 6\\
x = 0\\
x = - 2
\end{array} \right.\\
b)\left[ \begin{array}{l}
x = 3\\
x = - 13\\
x = - 1\\
x = - 9\\
x = - 3\\
x = - 7\\
x = - 4\\
x = - 6
\end{array} \right.\\
c)\left[ \begin{array}{l}
x = 14\\
x = - 8\\
x = 4\\
x = 2
\end{array} \right.\\
d)\left[ \begin{array}{l}
x = 4\\
x = - 11\\
x = - 2\\
x = - 4
\end{array} \right.
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)A = \dfrac{{2x - 3}}{{x + 1}} = \dfrac{{2\left( {x + 1} \right) - 5}}{{x + 1}}\\
= 2 - \dfrac{5}{{x + 1}}\\
A \in Z \to \dfrac{5}{{x + 1}} \in Z\\
\to x + 1 \in U\left( 5 \right)\\
\to \left[ \begin{array}{l}
x + 1 = 5\\
x + 1 = - 5\\
x + 1 = 1\\
x + 1 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 4\\
x = - 6\\
x = 0\\
x = - 2
\end{array} \right.\\
b)B = \dfrac{{x - 3}}{{x + 5}} = \dfrac{{x + 5 - 8}}{{x + 5}}\\
= 1 - \dfrac{8}{{x + 5}}\\
B \in Z \to \dfrac{8}{{x + 5}} \in Z\\
\to x + 5 \in U\left( 8 \right)\\
\to \left[ \begin{array}{l}
x + 5 = 8\\
x + 5 = - 8\\
x + 5 = 4\\
x + 5 = - 4\\
x + 5 = 2\\
x + 5 = - 2\\
x + 5 = 1\\
x + 5 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 3\\
x = - 13\\
x = - 1\\
x = - 9\\
x = - 3\\
x = - 7\\
x = - 4\\
x = - 6
\end{array} \right.\\
c)C = \dfrac{{3x + 2}}{{x - 3}} = \dfrac{{3\left( {x - 3} \right) + 11}}{{x - 3}}\\
= 3 + \dfrac{{11}}{{x - 3}}\\
C \in Z \to \dfrac{{11}}{{x - 3}} \in Z\\
\to x - 3 \in U\left( {11} \right)\\
\to \left[ \begin{array}{l}
x - 3 = 11\\
x - 3 = - 11\\
x - 3 = 1\\
x - 3 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 14\\
x = - 8\\
x = 4\\
x = 2
\end{array} \right.\\
d)D = \dfrac{{2x - 1}}{{x + 3}} = \dfrac{{2\left( {x + 3} \right) - 7}}{{x + 3}}\\
= 3 - \dfrac{7}{{x + 3}}\\
D \in Z \to \dfrac{7}{{x + 3}} \in Z\\
\to x + 3 \in U\left( 7 \right)\\
\to \left[ \begin{array}{l}
x + 3 = 7\\
x + 3 = - 7\\
x + 3 = 1\\
x + 3 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 4\\
x = - 11\\
x = - 2\\
x = - 4
\end{array} \right.
\end{array}\)