1 câu trả lời
Đáp án:
Giải thích các bước giải: \[\begin{array}{l} \begin{array}{*{20}{l}} {\left( {x - 2} \right).\left( {x + \frac{3}{5}} \right) > 0}\\ \begin{array}{l} TH1:\,\\ \left\{ \begin{array}{l} x - 2 > 0\\ x + \frac{3}{5} > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x > 2\\ x > \frac{{ - 3}}{5} \end{array} \right.\\ \Rightarrow x > 2\\ TH2:\\ \left\{ \begin{array}{l} x - 2 < 0\\ x + \frac{3}{5} < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x < 2\\ x < \frac{{ - 3}}{5} \end{array} \right. \end{array} \end{array}\\ \Rightarrow x < \frac{{ - 3}}{5}\\ Vay\,x > 2\,hoac\,x < \frac{{ - 3}}{5} \end{array}\]
Câu hỏi trong lớp
Xem thêm