Tìm x biết: c) $|x-3|=|x+7|$ d) $\frac{2+y}{16}=\frac{2+3y}{20}=\frac{1+y}{3x}$

2 câu trả lời

Answer

`c, |x - 3| = |x + 7|`

`=>` $\left[\begin{matrix} x - 3 = x + 7\\ x - 3 = - (x + 7)\end{matrix}\right.$

`=>` $\left[\begin{matrix} x - x = 7 + 3\\ x - 3 = - x - 7\end{matrix}\right.$

`=>` $\left[\begin{matrix} 0 = 10 \ \text{(Vô lý)}\\ x + x = -7 + 3\end{matrix}\right.$

`=> 2x = -4`

`=> x = -4 : 2`

`=> x = -2`

Vậy `x = -2` 

________________________________

`d, {2 + y}/16 = {2 + 3y}/20 = {1 + y}/{3x}`

Ta có:

`{2 + y}/16 = {2 + 3y}/20` 

`=> 20 . (2 + y) = 16 . (2 + 3y)`

`=> 40 + 20y = 32 + 48y`

`=> 20y - 48y = 32 - 40`

`=> -28y = -8`

`=> y = (-8) : (-28)`

`=> y = 2/7`

Thay `y = 2/7` vào `{2 + 3y}/20 = {1 + y}/{3x}` ta có:

`{2 + 3 . 2/7}/20 = {1 + 2/7}/{3x}`

`=> {2 + 6/7}/20 = {9/7}/{3x}`

`=> {20/7}/20 = {9/7}/{3x}`

`=> 3x . 20/7 = 20 . 9/7`

`=> 3x . 20/7 = 180/7`

`=> 3x = 180/7 : 20/7`

`=> 3x = 9`

`=> x = 9 : 3`

`=> x = 3`

Vậy `(x , y) = (3 , 2/7)` 

c,

$|x-3|=|x+7|$

Trường hợp 1: $x-3=x+7$

$\to x-x=3+7\\\to 0=10$

(Vô lí)

Trường hợp 2:

$x-3=-x-7\\\to x+x=3-7\\\to 2x=-4\\\to x=-2$

Vậy $x=-2$

d,

Xét : $\dfrac{2+y}{16}=\dfrac{2+3y}{20}\\\to 20 (2+y)=16 (2+3y)\\\to 40+20y=32 +48y\\\to 20y-48y=32-40\\\to -28y=-8\\\to y=\dfrac{2}{7}$

Do đó : $\dfrac{2+3.\dfrac{2}{7}}{20}=\dfrac{1+\dfrac{2}{7}}{3x}$

$\to \dfrac{1}{7}={\dfrac{9}{7}}{3x}\\\to 3x=9\\\to x=3$

Vậy $x=3,y=\dfrac{2}{7}$