tìm lim ( √x ² +x +2x) x-> - ∞ A. 2 B. - ∞ C. 1 D. + ∞ Giải chi tiết giúp em
2 câu trả lời
Đáp án:
B. −∞
Giải thích các bước giải:
lim
=\lim _{x\to \:-\infty \:}\left(\left(1+\dfrac{2x}{\sqrt{x^2+x}}\right)\sqrt{x^2+x}\right)
=\lim _{x\to \:-\infty \:}\left(1+\dfrac{2x}{\sqrt{x^2+x}}\right). \lim _{x\to \:-\infty \:}\left(\sqrt{x^2+x}\right)
=\left(-1\right). \infty \:
=-\infty \:
\begin{array}{l} \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + x} + 2x} \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2}\left( {1 + \dfrac{1}{x}} \right)} + 2x} \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \left( {\left| x \right|\sqrt {1 + \dfrac{1}{x}} + 2x} \right)\\ = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {1 + \dfrac{1}{x}} + 2x} \right) = \mathop {\lim }\limits_{x \to - \infty } x\left( {2 - \sqrt {1 + \dfrac{1}{x}} } \right)\\ = - \infty \to B \end{array}