2 câu trả lời
y=3sinx+2cosx2+sinx+cosx
y′=(3cosx−2sinx)(2+sinx+cosx)−(3sinx+2cosx)(cosx−sinx)(2+sinx+cosx)2
y′=6cosx+3sinxcosx+3cos2x−4sinx−2sin2x−2sinxcosx−(3sinxcosx−3sin2x+2cos2x−2sinxcosx(2+sinx+cosx)2
y′=1+6cosx−4sinx(2+sinx+cosx)2
y'=0 <-> 1 + 6cosx - 4 sinx = 0 hay 4 sinx - 6 cosx = 1.
Chia ca 2 ve cho \sqrt{52}, dat cosα=4/√52,sinα=6/√52,sinβ=1/√52. Khi do
sinxcosα−cosxsinα=sinβ hay sin(x+α)=sinβ vay x1=β−α+2kπ hoac x2=π−α−β+2kπ.
Voi x1=β−α+2kπ va ap dung cong thuc
cos(a±b) = cosa cosb ∓ sina sinb va sin(a±b) = sina cosb ± sinb cosa thay vao ptrinh ta co
y(x1)=12−5√5161−√51.
y(x2)=135−√51.
y=1−3sinx+2cosx2+sinx+cosx⇔2y+ysinx+ycosx=1−3sinx+2cosx⇔(y+3)sinx+(y−2)cosx=1−2yPhương trình có nghiệm⇔(y+3)2+(y−2)2≥(1−2y)2⇔y2−3y−6≤0⇔3−√332≤y≤3+√332⇒{miny=3−√332maxy=3+√332