1 câu trả lời
Đáp án:
min dấu "=" xảy ra \Leftrightarrow x=-\dfrac{\pi}{24}+k\dfrac{\pi}{3} (k\in\mathbb Z)
\max y=\dfrac1{\sqrt2}+2020 dấu "=" xảy ra \Leftrightarrow x=\dfrac{\pi}{8}+k\dfrac{\pi}{3} (k\in\mathbb Z).
Giải thích các bước giải:
y=\sin 6x-\cos 6x+2020
=\dfrac1{\sqrt2}\sin\left({6x-\dfrac{\pi}4}\right)+2020
Do -1\le\sin x\le1 \forall x
\Rightarrow-1\le\sin\left({6x-\dfrac{\pi}4}\right)\le1
\Rightarrow -\dfrac1{\sqrt2}+2020\le\dfrac1{\sqrt2}\sin\left({6x-\dfrac{\pi}4}\right)+2020\le\dfrac1{\sqrt2}+2020
Vậy \min y=-\dfrac1{\sqrt2}+2020 dấu "=" xảy ra \Leftrightarrow\sin\left({6x-\dfrac{\pi}4}\right)=-1
\Leftrightarrow 6x-\dfrac{\pi}4=-\dfrac{\pi}2+k2\pi
\Leftrightarrow x=-\dfrac{\pi}{24}+k\dfrac{\pi}{3} (k\in\mathbb Z)
\max y=\dfrac1{\sqrt2}+2020 dấu "=" xảy ra \Leftrightarrow\sin\left({6x-\dfrac{\pi}4}\right)=1
\Leftrightarrow 6x-\dfrac{\pi}4=\dfrac{\pi}2+k2\pi
\Leftrightarrow x=\dfrac{\pi}{8}+k\dfrac{\pi}{3} (k\in\mathbb Z).