Rút gọn A=(1+1/3)(1+1/8)(1+1/15)......(1+1/2499)

2 câu trả lời

Đáp án + Giải thích các bước giải:

`A=(1+1/3)(1+1/8)(1+1/15)......(1+1/2499)`

` =4/3 . 9/8 . 16/15..... . 2500/2499`

` =2^2/1.3 . 3^2/2.4 . 4^2/3.5..... . 50^2/49.51`

` =(2^2. 3^2. 4^2....50^2)/(1.3.2.4.3.5.....49.51)`

` =(2^2. 3^2. 4^2....50^2)/(2.3^2 . 4^2 . 5^2.....49^2 .50.51)`

` =(2. 50)/51=100/51`

Đáp án:

`A=25/51`

Giải thích các bước giải:

`M=1/3+1/15+1/35+....+1/2499`

`⇒A=1/1.3+1/3.5+1/5.7+...+1/49.51`

`⇒2A=1/1.3+2/3.5+2/5.7+...+2/49.51`

`⇒2A=1-1/3+1/3-1/5+1/5-1/7+...+1/49-1/51`

`⇒2A=1-1/51`

`⇒2A=50/51`

`⇒A=50/51:2/1`

`⇒A=25/51`

Vậy `A=25/51`