M=$\frac{a}{a+b}$+ $\frac{b}{b+c}$ +$\frac{c}{c+a}$ với a,,b,c > 0 . Chứng tỏ M ko phải số nguyên
2 câu trả lời
Đáp án + Giải thích các bước giải:
Ta có : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Vì vai trò của a,b,c là như nhau nên ta giả sử \(0< a< b< c\)
Khi đó : \(\frac{a}{a+b}>\frac{a}{a+b+c}\); \(\frac{b}{b+c}>\frac{b}{a+b+c}\); \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)(1)
Lại có : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\); \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\) ; \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng các bđt trên theo vế : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}+\frac{a+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}=2\)
Suy ra ta có : 1 < M < 2
⇒ $ M $không thể là số nguyên.