2 câu trả lời
Đáp án:
-\dfrac{16093}{3}
Giải thích các bước giải:
L = \lim\limits_{x\to 0} \dfrac{(x+2012).\sqrt[3]{1-2x}-2012\sqrt{4x+1}}{x}
= 2012\lim\limits_{x\to 0}\dfrac{\sqrt[3]{1-2x} - \sqrt{4x+1}}{x} + \lim\limits_{x\to 0}\sqrt[3]{1-2x}
Đặt \begin{cases}L_1 = \lim\limits_{x\to 0}\dfrac{\sqrt[3]{1-2x} - \sqrt{4x+1}}{x}\\L_2 = \lim\limits_{x\to 0}\sqrt[3]{1-2x}\end{cases}
Ta được:
L = 2012L_1 + L_2
\bullet\ \ L_2 = \lim\limits_{x\to 0}\sqrt[3]{1-2x}
\Leftrightarrow L_2 = \sqrt[3]{1-2.0}
\Leftrightarrow L_2 = 1
\bullet\ \ L_1 = \lim\limits_{x\to 0}\dfrac{\sqrt[3]{1-2x} - \sqrt{4x+1}}{x}
\Leftrightarrow L_1 = \lim\limits_{x\to 0}\dfrac{\left(\sqrt[3]{1-2x} - 1\right) - \left(\sqrt{4x+1} - 1\right)}{x}
\Leftrightarrow L_1 = \lim\limits_{x\to 0}\dfrac{\dfrac{-2x}{\sqrt[3]{(1-2x)^2} + \sqrt[3]{1-2x} + 1} - \dfrac{4x}{\sqrt{4x+1} + 1}}{x}
\Leftrightarrow L_1 = \lim\limits_{x\to 0}\left(\dfrac{-2}{\sqrt[3]{(1-2x)^2} + \sqrt[3]{1-2x} + 1} - \dfrac{4}{\sqrt{4x+1} + 1}\right)
\Leftrightarrow L_1 =\dfrac{-2}{\sqrt[3]{(1-2.0)^2} + \sqrt[3]{1-2.0} + 1} - \dfrac{4}{\sqrt{4.0+1} + 1}
\Leftrightarrow L_1 = - \dfrac23 - 2
\Leftrightarrow L_1 = -\dfrac83
Khi đó:
L = 2012L_1 + L_2 = 2012\cdot \left(-\dfrac83\right) + 1 =-\dfrac{16093}{3}