$\lim\limits_{x\to 0} \dfrac{(x+2012).\sqrt[3]{1-2x}-2012\sqrt{4x+1}}{x}$
2 câu trả lời
Đáp án:
$-\dfrac{16093}{3}$
Giải thích các bước giải:
$L = \lim\limits_{x\to 0} \dfrac{(x+2012).\sqrt[3]{1-2x}-2012\sqrt{4x+1}}{x}$
$= 2012\lim\limits_{x\to 0}\dfrac{\sqrt[3]{1-2x} - \sqrt{4x+1}}{x} + \lim\limits_{x\to 0}\sqrt[3]{1-2x}$
Đặt $\begin{cases}L_1 = \lim\limits_{x\to 0}\dfrac{\sqrt[3]{1-2x} - \sqrt{4x+1}}{x}\\L_2 = \lim\limits_{x\to 0}\sqrt[3]{1-2x}\end{cases}$
Ta được:
$L = 2012L_1 + L_2$
$\bullet\ \ L_2 = \lim\limits_{x\to 0}\sqrt[3]{1-2x}$
$\Leftrightarrow L_2 = \sqrt[3]{1-2.0}$
$\Leftrightarrow L_2 = 1$
$\bullet\ \ L_1 = \lim\limits_{x\to 0}\dfrac{\sqrt[3]{1-2x} - \sqrt{4x+1}}{x}$
$\Leftrightarrow L_1 = \lim\limits_{x\to 0}\dfrac{\left(\sqrt[3]{1-2x} - 1\right) - \left(\sqrt{4x+1} - 1\right)}{x}$
$\Leftrightarrow L_1 = \lim\limits_{x\to 0}\dfrac{\dfrac{-2x}{\sqrt[3]{(1-2x)^2} + \sqrt[3]{1-2x} + 1} - \dfrac{4x}{\sqrt{4x+1} + 1}}{x}$
$\Leftrightarrow L_1 = \lim\limits_{x\to 0}\left(\dfrac{-2}{\sqrt[3]{(1-2x)^2} + \sqrt[3]{1-2x} + 1} - \dfrac{4}{\sqrt{4x+1} + 1}\right)$
$\Leftrightarrow L_1 =\dfrac{-2}{\sqrt[3]{(1-2.0)^2} + \sqrt[3]{1-2.0} + 1} - \dfrac{4}{\sqrt{4.0+1} + 1}$
$\Leftrightarrow L_1 = - \dfrac23 - 2$
$\Leftrightarrow L_1 = -\dfrac83$
Khi đó:
$L = 2012L_1 + L_2 = 2012\cdot \left(-\dfrac83\right) + 1 =-\dfrac{16093}{3}$