2 câu trả lời
1+cot(2x)=1−cos(2x)sin2(2x)
⇔1+cot(2x)−1−cos(2x)sin2(2x)=0
⇔sin2(2x)+sin2(2x)cot(2x)−1+cos(2x)sin2(2x)=0
⇔sin2(2x)+sin2(2x)cot(2x)−1+cos(2x)=0
⇔cos(2x)−cos2(2x)+(1−cos2(2x))cot(2x)=0
⇔(1−cos(2x))(cos(2x)+cot(2x)(1+cos(2x)))=0
⇔{1−cos(2x)=0cos(2x)+cot(2x)(1+cos(2x))=0 ⇔{x=kπx=π4+kπ,x=kπ+3π4
⇔{x=π4+kπx=kπ+3π4
Đáp án:
Giải thích các bước giải:
ĐKXĐ :sin2x≠0<=>x≠kπ2
PT<=>sin22x+sin2xcos2x=1−cos2x
<=>sin2xcos2x−(1−sin22x)+cos2x=0
<=> sin2xcos2x - cos^{2}2x + cos2x =‘0
<=> cos2x(sin2x - cos2x + 1) = 0
- TH1 : cos2x = 0 <=> x = (2k + 1)\dfrac{\pi}{4}
- TH2 : cos2x - sin2x = 1
=> sin^{2}2x + cos^{2}2x - 2sin2xcos2x = 1
<=> sin2xcos2x = 0 <=> cos2x = 0 (vì sin2x \neq 0)
<=> 2x = (2k + 1)\dfrac{\pi}{2} <=> x = (2k + 1)\dfrac{\pi}{4}