CMR: 1+ $\frac{1}{2^2}$+ $\frac{1}{3^2}$ + $\frac{1}{4^2}$ +...+ $\frac{1}{100^2}$ <2

2 câu trả lời

Đáp án:

 `C < 2`

Giải thích các bước giải:

 -Đặt `C = 1 + 1/2^2 + 1/3^2 +........+ 1/100^2`

 -Ta có: `1 = 1`

             `1/2^2 = 1/1.2`

             `1/3^2 = 1/2.3`

                   ................

             `1/100^2 < 1/99.100`

⇒ `C < 1 + 1/1.2 + 1/2.3 +........+ 1/99.100`

⇒ `C < 1 + 1 - 1/2 + 1/2 - 1/3 +............+ 1/99 - 1/100`

⇒ `C < 2 - 1/100 < 2`

⇒ `C < 2`

                                        Vậy `C < 2`

Đáp án:

$\frac{1}{2^2}<\frac{1}{1.2}\\
\frac{1}{3^2}<\frac{1}{2.3}\\
\Rightarrow 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\\
<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.100}\\
=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\\
=2-\frac{1}{100}\\
=\frac{199}{100}\\
<\frac{200}{100}=2$