Cho tam giác ABC có góc A bằng 90 độ trên cạnh BC lấy điểm E sao cho BE=BA tia phân giác góc B cắt AC ở D kéo dài ED cắt ba tại K A chứng minh DA=DE B Chứng minh tam giác DKC là tam giác cân C cho BC = 10 cm AB = 6 cm Tính AC
1 câu trả lời
$a)$ $\text{Xét Δ ABD và Δ EBD có AB = EB (gt) }$
`\hat{ABD}=``\hat{EBD}` $\text{(BD là tia phân giác của }$ `\hat{ABE}`$)$ `\text{;BD chung.}`
$\text{⇒ ΔABD = ΔEBD (c-g-c) }$
$\text{⇒ DA = DE (đpcm) }$
$b)$ $\text{Vì ΔABD = ΔEBD (cmt) }$
$\text{⇒ }$ `\hat{ABD}=``\hat{AEB}= 90^0` $\text{(2 góc tương ứng) }$
$\text{⇒ }$ `\hat{DAK}=``\hat{DEC}= 90^0`
$\text{- Xét ΔAKD và ΔEDC, ta có: }$
`\hat{DAK}=``\hat{DEC}` $\text{ (cmt) }$
$\text{AD = DE ( cmt) }$
`\hat{ADK}=``\hat{EDC}` $\text{ (2 góc đối đỉnh) }$
$\text{ ⇒ ΔAKD = ΔEDC (g-c-g)}$
$\text{ ⇒ DK = DC (2 cạnh tương ứng)}$
$\text{ ⇒ ΔDKC cân tại D }$
$c)$ $\text{ Xét ΔABX vuông tại A }$ $(\widehat{A})=90^0$
$\text{- Theo định lý Pytago, ta có:}$
`BC^2=AB^2 + AC^2`
$\text{⇒ }$ `AC^2 = 100- 36=64`
$\text{⇒ AC = 8 cm}$