Cho đoạn thảng ab có o là trung điểm . trên hai nửa mặt phẳng đối nhau bờ AB vẽ tia Ax // By . Lấy C,E trên tia Ax và D,E trên By sao cho AC =BD , CE = DF. C/M ED =CF

1 câu trả lời

Đáp án:

Vì Ax//By;C,E thuộc Ax;D,F thuộc By=>Ac//BD, AE//BF

=>góc CAO=góc OBD

Góc AEO=góc OFD

Góc ACO= góc ODB

xét tam giác ACO và tam giác OBD ta có

OA=OB;Góc CAO=BOD;ACO=ODB

=>hai tam giác này bằng nhau

=>góc COA=BOD(2 góc tương ứng )

Mà A,O,B thửng hàng=>góc COB+COA=180 độ

=>góc BOD+COB=180 độ

=>O,C,D thẳng hàng

tương tự chứng minh với E,O,F

b,Từ những tam giác bằng nhau ta có được OE=OF;CO=OD

xét tam giác OED và OCF có OE=OF; CO=OD; góc COF=EOD( 2 góc đối đỉnh)

=>góc FOD=CDE; DE=CF(2 cạnh tương ứng)

mà hai góc này ở vị trí so le trong của hai đoạn thẳng DE và CF được cắt bởi đoạn DC

=>DE//CF

Giải thích các bước giải:

 

Câu hỏi trong lớp Xem thêm