Bài 1 : Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

2 câu trả lời

Đáp án : 

Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:

AB = AC (giả thiết)

∠(BAC) chung

⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)

⇒ AD = AE (hai cạnh tương ứng)

Xét ΔADK vuông tại D và ΔAEK vuông tại E có:

AD = AE (chứng minh trên)

AK cạnh chung

⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)

⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)

Vậy AK là tia phân giác của góc BAC.

 

 

Đáp án:

 

Giải thích các bước giải: