A= $5^{10}$. $7^3-25^5.49^2/ (125.7)^3+5^9.14^3$
2 câu trả lời
Đáp án:
Giải thích các bước giải:
\(\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.7^3.2^3}\)
\(=\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.8}\)
\(=\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+8\right)}\)
\(=\frac{5.6}{9}=\frac{-5.2}{3}=\frac{-10}{3}\)
`A = ( 5^10 . 7^3 - 25^5 . 49^2 )/( ( 125 . 7 )^3 + 5^9 . 14^3 )`
`A = ( 5^10 . 7^3 - ( 5^2 )^5 . ( 7^2 )^2 )/( ( 5^3 . 7 )^3 + 5^9 . ( 2 . 7 )^3 )`
`A = ( 5^10 . 7^3 - 5^10 . 7^4 )/( 5^9 . 7^3 + 5^9 . 2^3 . 7^3 )`
`A = ( 5^10 . 7^3 - 5^10 . 7^3 . 7 )/( 5^9 . 7^3 . ( 1 + 2^3 ) )`
`A = ( 5^10 . 7^3 . ( 1 - 7 ) )/( 5^9 . 7^3 . ( 1 + 8 ) )`
`A = ( 5 . ( 1 - 7 ) )/( 1 + 8 )`
`A = ( 5 . ( - 6 ) )/9`
`A = - 10/3`
Vậy `, A = - 10/3 .`