1 câu trả lời
2sin2x+3cos2x−1=0⇔2sin2x+3cos2x=1⇔2√13sin2x+3√13cos2x=1√13⇔sin(2x+α)=1√13(cosα=2√13;sinα=3√13)⇔sin(2x+α)=sinβ⇔[2x+α=β+k2π2x+α=π−β+k2π⇔[x=β−α2+kπx=π−β−α2+kπ(k∈Z).
2sin2x+3cos2x−1=0⇔2sin2x+3cos2x=1⇔2√13sin2x+3√13cos2x=1√13⇔sin(2x+α)=1√13(cosα=2√13;sinα=3√13)⇔sin(2x+α)=sinβ⇔[2x+α=β+k2π2x+α=π−β+k2π⇔[x=β−α2+kπx=π−β−α2+kπ(k∈Z).