Câu hỏi:
2 năm trước
Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 3x + 5} }}{{4x - 1}}\).
Trả lời bởi giáo viên
Đáp án đúng: b
Bước 1: Đưa \(\left| x \right|\) ra ngoài căn bậc hai: \(\sqrt {{x^2} + 3x + 5} = \left| x \right|\sqrt {1 + \dfrac{3}{x} + \dfrac{5}{{{x^2}}}} \)
Bước 2: Phá dấu giá trị tuyệt đối và rút gọn x ở mẫu.
Hướng dẫn giải:
Bước 1: Đưa \(\left| x \right|\) ra ngoài căn bậc hai: \(\sqrt {{x^2} + 3x + 5} = \left| x \right|\sqrt {1 + \dfrac{3}{x} + \dfrac{5}{{{x^2}}}} \)
Bước 2: Phá dấu giá trị tuyệt đối và rút gọn x ở mẫu.