Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\,1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\\ \Leftrightarrow \left( {1 - \cos 2x} \right) + \left( {\sin x - \sin 2x} \right) + \left( {\cos 3x - \cos x} \right) = 0\\ \Leftrightarrow 2{\sin ^2}x + \left( {\sin x - \sin 2x} \right) - 2\sin 2x\sin x = 0\\ \Leftrightarrow 2\sin x\left( {\sin x - \sin 2x} \right) + \left( {\sin x - \sin 2x} \right) = 0\\ \Leftrightarrow \left( {\sin x - \sin 2x} \right)\left( {2\sin x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = \sin x\\\sin x =- \dfrac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + k2\pi \\2x = \pi - x + k2\pi \\x = -\dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\\x =- \dfrac{\pi }{{6}} + k2\pi \\x = \dfrac{{7\pi }}{{6}} + k2\pi \end{array} \right.\end{array}\)
Vậy nghiệm của phương trình là: \(x = k2\pi \), \(x = \dfrac{\pi }{3} + \dfrac{{k2\pi }}{3}\), \(x = -\dfrac{\pi }{{6}} + k2\pi \), \(x = \dfrac{{7\pi }}{{6}} + k2\pi \).
Hướng dẫn giải:
- Nhóm \(1 - \cos 2x\), \(\sin x - \sin 2x\), \(\cos 3x - \cos x\).
- Sử dụng công thức nhân đôi: \(1 - \cos 2x = 2{\sin ^2}x\), công thức biến đổi tổng thành tích: \(\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\).
- Đưa phương trình đã cho về dạng tích.
- Giải phương trình lượng giác cơ bản: \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).