Câu hỏi:
2 năm trước

Đặt điện áp \(u = {U_0}{\rm{cos}}\omega {\rm{t}}\) (Uo và ω không đổi) vào hai đầu đoạn mạch AB theo thứ tự gồm một tụ điện, một cuộn cảm thuần và một điện trở thuần mắc nối tiếp. Gọi M là điểm nối giữa tụ điện và cuộn cảm. Biết điện áp hiệu dụng giữa hai đầu AM bằng điện áp hiệu dụng giữa hai đầu MB và cường độ dòng điện trong đoạn mạch lệch pha \(\dfrac{\pi }{{12}}\) so với điện áp giữa hai đầu đoạn mạch. Hệ số công suất của đoạn mạch  MB là?

Trả lời bởi giáo viên

Đáp án đúng: d

Cách 1: Phương pháp đại số:

Do UAM = UMB => ZC = ZRL

Ta có:

\({\rm{cos}}\varphi {\rm{ = }}\dfrac{R}{{{Z_{MB}}}} = \dfrac{R}{{{Z_C}}}\)

\(\begin{array}{l}tan{\varphi _{AB}} = \tan \dfrac{\pi }{{12}} = \dfrac{{{Z_L} - {Z_C}}}{R} = \dfrac{{{Z_L}}}{R} - \dfrac{{{Z_C}}}{R} \\= \tan \varphi  - \dfrac{1}{{{\rm{cos}}\varphi }} = \dfrac{{\sin \varphi  - 1}}{{{\rm{cos}}\varphi }} \\=  - \dfrac{{{\rm{cos}}\dfrac{\varphi }{2} - \sin \dfrac{\varphi }{2}}}{{{\rm{cos}}\dfrac{\varphi }{2} + \sin \dfrac{\varphi }{2}}}\\ \to \sin \dfrac{\varphi }{2}\left( {1 + \tan \dfrac{\pi }{{12}}} \right) = {\rm{cos}}\dfrac{\varphi }{2}\left( {1 - \tan \dfrac{\pi }{{12}}} \right) \\\to \tan \dfrac{\varphi }{2} = \dfrac{{\left( {1 - \tan \dfrac{\pi }{{12}}} \right)}}{{\left( {1 + \tan \dfrac{\pi }{{12}}} \right)}} = \dfrac{1}{{\sqrt 3 }} \\\to \dfrac{\varphi }{2} = {30^0} \\\to \varphi  = {60^0}\\ \to c{\rm{os}}\varphi {\rm{ = 0}}{\rm{,5}}\end{array}\)

Cách 2: Sử dụng giản đồ véctơ

Ta có:

\(\angle O{U_{AB}}{U_{MB}} = \pi  - \left( {\dfrac{\pi }{{12}} + \dfrac{\pi }{2}} \right) = \dfrac{{5\pi }}{{12}} = \angle {U_{MB}}O{U_{AB}}\) ( do tam giác OUMBUAB cân tại UMB )

\(\begin{array}{l} \to {\varphi _{MB}} = \angle {U_{MB}}O{U_R} = \dfrac{{5\pi }}{{12}} - \dfrac{\pi }{{12}} = \dfrac{\pi }{3}\\ \to c{\rm{os}}{\varphi _{MB}} = c{\rm{os}}\dfrac{\pi }{3} = 0,5\end{array}\)

Hướng dẫn giải:

Cách 1: Phương pháp đại số: sử dụng công thức \(\tan \varphi  = \dfrac{{{Z_L} - {Z_C}}}{R}\) và công thức hệ số công suất \({\rm{cos}}\varphi {\rm{ = }}\dfrac{R}{Z}\)

Cách 2: Sử dụng giản đồ véctơ

Câu hỏi khác