a) 7 + 2x = 22 – 3x b) (2x – 1)2 + (2 – x)(2x – 1) = 0 c) x+5/6 - x-2/4 = 2x+1/ d) x-1/x+2 - x/x-2 = 5x-8/x^2-4
2 câu trả lời
Đáp án + Giải thích các bước giải:
`a) 7 + 2x = 22 - 3x `
`<=> 2x + 3x = 22 - 7 `
`<=> 5x = 15 `
`<=> x = 3 `
Vậy `S = { 3 } `
`b) ( 2x - 1 )2 + ( 2 - x ) ( 2x - 1 ) = 0 `
`<=>( 2x - 1 ) ( 2 + 2 - x ) = 0 `
`<=> ( 2x - 1 ) ( 4 - x ) = 0 `
`<=>`\(\left[ \begin{array}{l}2x-1=0\\4-x=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{1}{2} \\x=4\end{array} \right.\)
Vậy `S = { 1/2 ; 4 } `
`c) ( x + 5 )/6 - ( x - 2 )/4 = ( 2x + 1 )/12 `
`=> 2 ( x + 5 ) - 3 ( x - 2 ) = 2x + 1 `
`<=> 2x + 10 - 3x + 6 = 2x + 1 `
`<=> - x + 16 = 2x + 1 `
`<=> - x - 2x = 1 - 16 `
`<=> - 3x = - 15 `
`<=> x = 5 `
Vậy `S = { 5 }`
`d) ( x - 1 )/( x + 2 ) - x/( x - 2 ) = ( 5x - 8 )/( x^2 - 4 ) `
`<=> (( x - 1 ) ( x - 2 ))/(( x - 2 ) ( x + 2 )) - ( x ( x + 2 ))/(( x - 2 ) ( x + 2 )) = ( 5x - 8 )/(( x - 2 ) ( x + 2))`
`=> ( x - 1 ) ( x - 2 ) - x ( x + 2 ) = 5x - 8 `
`<=> x^2 - 2x - x + 2 - x^2 - 2x = 5x - 8 `
`<=> - 5x + 2 = 5x - 8 `
`<=> - 5x - 5x = - 8 - 2 `
`<=> - 10x = - 10 `
`<=> x = 1 `
Vậy `S = { 1 } `
Đáp án:
\(\begin{array}{l}
a)x = 3\\
c)x = 5\\
b)\left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = - 1
\end{array} \right.\\
d)x = 1
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)7 + 2x = 22 - 3x\\
\to 5x = 15\\
\to x = 3\\
c)\dfrac{{x + 5}}{6} - \dfrac{{x - 2}}{4} = \dfrac{{2x + 1}}{{12}}\\
\to 2\left( {x + 5} \right) - 3\left( {x - 2} \right) = 2x + 1\\
\to 2x + 10 - 3x + 6 = 2x + 1\\
\to - 3x = - 15\\
\to x = 5\\
b){\left( {2x - 1} \right)^2} + \left( {2 - x} \right)\left( {2x - 1} \right) = 0\\
\to \left( {2x - 1} \right)\left( {2x - 1 + 2 - x} \right) = 0\\
\to \left[ \begin{array}{l}
2x - 1 = 0\\
x + 1 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = - 1
\end{array} \right.\\
d)DK:x \ne \pm 2\\
\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 8}}{{{x^2} - 4}}\\
\to \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) - 5x + 8}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = 0\\
\to {x^2} - 3x + 2 - {x^2} - 2x - 5x + 8 = 0\\
\to - 10x + 10 = 0\\
\to x = 1
\end{array}\)