$\frac{4}{x+6}$ + $\frac{1}{x-3}$ = $\frac{3x+8}{x^2+7x+6}$
2 câu trả lời
$\text{$\dfrac{4}{x + 6}$ + $\dfrac{1}{x - 3}$ = $\dfrac{3x + 8}{x² + 7x + 6}$ Đkxđ: x $\neq$ -1; x $\neq$ 3; x $\neq$ -6}$
$\text{⇔ $\dfrac{4(x - 3) + 1(x + 6)}{(x - 3)(x + 6)}$ = $\dfrac{3x + 8}{x² + x + 6x + 6}$ }$
$\text{⇔ $\dfrac{4x - 12 + x + 6}{(x - 3)(x + 6)}$ = $\dfrac{3x + 8}{x(x + 1) + 6(x + 1)}$ }$
$\text{⇔ $\dfrac{5x - 6}{(x - 3)(x + 6)}$ = $\dfrac{3x + 8}{(x + 6)(x + 1)}$ }$
$\text{⇔ $\dfrac{(5x - 6)(x + 1)}{(x - 3)(x + 6)(x + 1)}$ = $\dfrac{(3x + 8)(x - 3)}{(x + 6)(x + 1)(x - 3)}$ }$
$\text{⇒ 5x² + 5x - 6x - 6 = 3x² - 9x + 8x - 24}$
$\text{⇔ 5x² - x - 6 = 3x² - x - 24}$
$\text{⇔ 5x² - 3x² - x + x = -24 + 6}$
$\text{⇔ 2x² = -18}$
$\text{⇔ x² = -9}$
$\text{Mà x² ≥ 0 với ∀ x ∈ đkxđ}$
$\text{⇒ x ∈ ∅}$
$\text{Vậy phương trình vô nghiệm}$
$\textit{Ha1zzz}$
Đáp án:
`S={∅}`
Giải thích các bước giải:
`4/(x+6)+1/(x-3)=(3x+8)/(x^2+7x+6)(ĐKXD: x \ne -6;3;-1)`
`=>(4(x-3)+x+6)/((x+6)(x-3))=(3x+8)/((x+6)(x+1))`
`=>((5x-6)(x+1))/((x+6)(x-3)(x+1))=((3x+8)(x-3))/((x+6)(x-3)(x+1))`
`=>(5x-6)(x+1)=(3x+8)(x-3)`
`=>(5x^2-x-6)=(3x^2-x-24)`
`=>2x^2+18=0`
`=>x^2+9=0` ( vô lí )
`=>x in ∅`
`@nguyen``nam500#hoidap247`