$\frac{2}{3x+1}$ - $\frac{15}{6x^2-x-1}$ = $\frac{3}{2x-1}$
2 câu trả lời
Đáp án + Giải thích các bước giải:
`2/(3x+1)-15/(6x^2-x-1)=3/(2x-1)` Điều kiện: `x\ne1/2; x\ne(-1)/3`
`⇔ 2/(3x+1)-15/(6x^2-3x+2x-1)=3/(2x-1)`
`⇔ 2/(3x+1)-15/((3x(2x-1)+(2x-1))=3/(2x-1)`
`⇔ 1/(3x+1)-15/((2x-1)(3x+1))=3/(2x-1)`
`⇔ (2(2x-1))/((2x-1)(3x+1)) -15/((2x-1)(3x+1)) =(3(3x+1))/(2x-1)`
`=> 2(2x-1)-15=3(3x+1)`
`⇔ 4x-2-15=9x+3`
`⇔ 4x-17=9x+3`
`⇔ 4x-9x=3+17`
`⇔ -5x=20`
`⇔ x=-4`( thỏa mãn)
Vậy `S={-4}`
$\text{$\dfrac{2}{3x + 1}$ - $\dfrac{15}{6x² - x - 1}$ = $\dfrac{3}{2x - 1}$ Đkxđ: x $\neq$ -$\dfrac{1}{3}$; x $\neq$ $\dfrac{1}{2}$ }$
$\text{⇔ $\dfrac{2}{3x + 1}$ - $\dfrac{15}{6x² - 3x + 2x - 1}$ = $\dfrac{3}{2x - 1}$ }$
$\text{⇔ $\dfrac{2}{3x + 1}$ - $\dfrac{15}{3x(2x - 1) + (2x - 1)}$ = $\dfrac{3}{2x - 1}$ }$
$\text{⇔ $\dfrac{2}{3x + 1}$ - $\dfrac{15}{(3x + 1)(2x - 1)}$ = $\dfrac{3}{2x - 1}$ }$
$\text{⇔ $\dfrac{2(2x - 1) - 15}{(3x + 1)(2x - 1)}$ = $\dfrac{3(3x + 1)}{(3x + 1)(2x - 1)}$}$
$\text{⇒ 4x - 2 - 15 = 9x + 3}$
$\text{⇔ 4x - 9x = 3 + 2 + 15}$
$\text{⇔ -5x = 20}$
$\text{⇔ x = -4 (t/m)}$
$\text{Vậy phương trình có tập nghiệm là S = {-4}}$
$\textit{Ha1zzz}$