$\frac{2}{3x+1}$ - $\frac{15}{6x^2-x-1}$ = $\frac{3}{2x-1}$

2 câu trả lời

Đáp án + Giải thích các bước giải:

 `2/(3x+1)-15/(6x^2-x-1)=3/(2x-1)`       Điều kiện: `x\ne1/2; x\ne(-1)/3`

`⇔ 2/(3x+1)-15/(6x^2-3x+2x-1)=3/(2x-1)`

`⇔ 2/(3x+1)-15/((3x(2x-1)+(2x-1))=3/(2x-1)`

`⇔ 1/(3x+1)-15/((2x-1)(3x+1))=3/(2x-1)`

`⇔ (2(2x-1))/((2x-1)(3x+1)) -15/((2x-1)(3x+1)) =(3(3x+1))/(2x-1)`

`=> 2(2x-1)-15=3(3x+1)`

`⇔ 4x-2-15=9x+3`

`⇔ 4x-17=9x+3`

`⇔ 4x-9x=3+17`

`⇔ -5x=20`

`⇔ x=-4`( thỏa mãn)

Vậy `S={-4}`

$\text{$\dfrac{2}{3x + 1}$ - $\dfrac{15}{6x² - x - 1}$ = $\dfrac{3}{2x - 1}$ Đkxđ: x $\neq$ -$\dfrac{1}{3}$; x $\neq$ $\dfrac{1}{2}$ }$

$\text{⇔ $\dfrac{2}{3x + 1}$ - $\dfrac{15}{6x² - 3x + 2x - 1}$ = $\dfrac{3}{2x - 1}$ }$

$\text{⇔ $\dfrac{2}{3x + 1}$ - $\dfrac{15}{3x(2x - 1) + (2x - 1)}$ = $\dfrac{3}{2x - 1}$ }$

$\text{⇔ $\dfrac{2}{3x + 1}$ - $\dfrac{15}{(3x + 1)(2x - 1)}$ = $\dfrac{3}{2x - 1}$ }$

$\text{⇔ $\dfrac{2(2x - 1) - 15}{(3x + 1)(2x - 1)}$ = $\dfrac{3(3x + 1)}{(3x + 1)(2x - 1)}$}$

$\text{⇒ 4x - 2 - 15 = 9x + 3}$

$\text{⇔ 4x - 9x = 3 + 2 + 15}$

$\text{⇔ -5x = 20}$

$\text{⇔ x = -4 (t/m)}$

$\text{Vậy phương trình có tập nghiệm là S = {-4}}$

$\textit{Ha1zzz}$