(1- $\frac{4}{\sqrt{x}+1 }$ +$\frac{1}{x-1}$ ): $\frac{x-2{\sqrt[]{x}}}{x-1}$ (x>0,x=/1,x=/4) a, rg
2 câu trả lời
Đáp án:
`(\sqrt{x}-2)/(\sqrt{x}).`
Giải thích các bước giải:
`(1-4/(\sqrt{x}+1)+1/(x-1)):(x-2\sqrt{x})/(x-1)(x>=0, x\ne1, x\ne4)`
`=[1-4/(\sqrt{x}+1)+1/((\sqrt{x}-1)(\sqrt{x}+1))]:(\sqrt{x}(\sqrt{x}-2))/(x-1)`
`=[((\sqrt{x}-1)(\sqrt{x}+1))/((\sqrt{x}-1)(\sqrt{x}+1))-(4\sqrt{x}-1)/((\sqrt{x}-1)(\sqrt{x}+1))+1/((\sqrt{x}-1)(\sqrt{x}+1))]:(\sqrt{x}(\sqrt{x}-2))/(x-1)`
`=((\sqrt{x}-1)(\sqrt{x}+1)-4(\sqrt{x}-1)+1)/((\sqrt{x}-1)(\sqrt{x}+1)) :(\sqrt{x}(\sqrt{x}-2))/(x-1)`
`=(x-1-4\sqrt{x}+4+1)/((\sqrt{x}-1)(\sqrt{x}+1)):(\sqrt{x}(\sqrt{x}-2))/(x-1)`
`=(x-4\sqrt{x}+4)/(\sqrt{x^2}-1^2) . (x-1)/(\sqrt{x}(\sqrt{x}-2))`
`=(x-4\sqrt{x}+4)/(\sqrt{x}(\sqrt{x}-2))`
`=((\sqrt{x}-2)^2)/(\sqrt{x}(\sqrt{x}-2))`
`=(\sqrt{x}-2)/(\sqrt{x}).`